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A numerical investigation is carried out to analyze natural convection heat transfer inside a cavity with a
sinusoidal vertical wavy wall and filled with a porous medium. The vertical walls are isothermal while
the top and bottom horizontal straight walls are kept adiabatic. The transport equations are solved using
the finite element formulation based on the Galerkin method of weighted residuals. The validity of the
numerical code used is ascertained by comparing our results with previously published results. The
importance of non-Darcian effects on convection in a wavy porous cavity is analyzed in this work. Differ-
ent flow models for porous media such, as Brinkman-extended Darcy, Forchheimer-extended Darcy, and
the generalized flow models, are considered. Results are presented in terms of streamlines, isotherms,
and local heat transfer. The implications of Rayleigh number, number of wavy surface undulation and
amplitude of the wavy surface on the flow structure and heat transfer characteristics are investigated
in detail while the Prandtl number is considered equal to unity.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Flow and heat transfer from irregular surfaces are often encoun-
tered in many engineering applications to enhance heat transfer
such as micro-electronic devices, flat-plate solar collectors and
flat-plate condensers in refrigerators [1], and geophysical applica-
tions (e.g., flows in the earth’s crust [2]), underground cable sys-
tems, electric machinery, cooling system of micro-electronic
devices, etc. In addition, roughened surfaces could be used in the
cooling of electrical and nuclear components where the wall heat
flux is known. It is worth noting that most of the previous studies
on natural convection inside a wavy enclosure were conducted in
the absence of porous medium [2–5]. Adjlout et al. [3] have studied
laminar natural convection in an inclined cavity with a heated
undulated wall, i.e., smooth wave-like pattern. Their results con-
cluded that the wavy wall affects the flow and heat transfer rate
in the enclosure. Mahmud et al. [4] studied flow and heat transfer
characteristics inside an isothermal vertical wavy-walled enclo-
sure bounded by two adiabatic straight walls at different Grashof
number and orientations for some selected waviness of the surface.
Das and Mahmud [2] conducted a numerical investigation of natu-
ral convection in an enclosure consisting of two isothermal hori-
zontal wavy walls and two adiabatic vertical straight walls. They
reported that the amplitude-wavelength ratio affected local heat
transfer rate, but it had no significant influence on average heat
transfer rate. Dalal and Das [5] analyzed numerically natural con-
ll rights reserved.

: +40 264 591 906.
vection in a cavity with a wavy vertical wavy wall heated from be-
low and uniformly cooled from top and both vertical sides. Their
results showed that the presence of undulation in the right wall af-
fected local heat transfer rate and flow field as well as thermal
field.

Natural convective flow in differentially heated enclosures filled
with Darcian or non-Darcian fluid-saturated porous media has re-
ceived a considerable attention in the literature. This attention
stems from its importance in vast technological, engineering, and
natural applications. The steady-state free convection inside a cav-
ity made of two horizontal straight walls and two vertical bent-
wavy walls and filled with a fluid-saturated porous medium was
numerically investigated by Misirlioglu et al. [6] using Darcy mod-
el. Later on, the same authors analyzed numerically natural con-
vection inside an inclined wavy enclosure filled with a porous
medium assuming Darcy flow model with the Boussinesq approx-
imation [7]. Their results showed that the flow and thermal struc-
tures was found to be highly dependent on surface waviness for
inclination angles less than 45�, especially for high Rayleigh num-
bers. Kumar et al. [8] studies numerically free convection heat
transfer from am isothermal wavy surface in a porous enclosure
assuming valid Forchheimer-extended Darcy model. The average
Nusselt number was found to increase with increasing Rayleigh
number whereas it decreased with increasing value of wave ampli-
tude. The effect of surface undulations on natural convection in a
thermally stratified vertical porous enclosure has been analyzed
numerically by Kumar and Shalini [9] using finite element method.
The flow was modeled using Darcy model. The results of that study
illustrated that the global heat transfer into the system has been
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Nomenclature

A amplitude of the wavy surface
cp specific heat at constant pressure
Da Darcy number, K=H2

F Forchheimer constant
G acceleration due to gravity
H height of the cavity
J unit vector oriented along the pore velocity vector
K thermal conductivity
K permeability of the porous medium
L length of the cavity
N number of undulation
Nu Nusselt number
p pressure
P dimensionless pressure, p=qðgbDTHÞ
Pr Prandtl number, m=a
Ra Rayleigh number, gbDTH3=ma
t time
T temperature
TC temperature of the cold wall

TH temperature of the hot wall
v dimensional velocity vector
V dimensionless velocity vector, v=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH

p
W dimensionless width of the wall, b=H
x x-coordinate
X dimensionless X-coordinate, x=H
y y-coordinate
Y dimensionless Y-coordinate, y=H

Greek symbols
a thermal diffusivity
b coefficient of thermal expansion
e porosity of the porous medium
m kinematic viscosity
h dimensionless temperature, ðT � TCÞ=ðTH � TCÞ
q density
s dimensionless time, t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH=H

p
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Fig. 1. Schematic diagram of the cavity and boundary conditions.
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found to decrease with increasing amplitude and increasing num-
ber of waves per unit length. Kumar [10] analyzed numerically
using finite element method free convection induced by a vertical
wavy surface with uniform heat flux in a porous enclosure. The re-
sults revealed that small sinusoidal drifts from the smoothness of a
vertical wall with a phase angle of 60� and high frequency en-
hanced the free convection from a vertical wall with uniform heat
flux.

Murthy et al. [11] studied the effect of surface undulations on
the natural convection heat transfer from an isothermal surface
in a Darcian fluid-saturated porous enclosure assuming valid Darcy
flow model. The comparison of global heat flux results in the wavy
wall case with those of the horizontal flat wall case illustrated that,
in a porous enclosure, the wavy wall reduced the heat transfer into
the system. Kumar [12] studied free convection in a thermally
stratified non-Darcian wavy porous enclosure. The effect of inertial
forces due to non-Darcian Forchheimer term, thermal stratification
level, vertical wavy wall amplitude, wave phase, roughness param-
eter, and Rayleigh number on the convection process was ana-
lyzed. The maximum influence of non-Darcian forces was noticed
when wave phase of the wavy wall was around 300�. Recently, Sul-
tana and Hyder [13] analyzed numerically non-Darcy natural con-
vection inside a porous wavy-walled enclosure for various Darcy
number and aspect ratio using one undulation. The enclosure con-
sisted of two isothermal vertical wavy walls and two insulated hor-
izontal walls. Their results showed that the wavy surface
amplitude had a little influence on heat transfer distribution com-
pared to the influence of Rayleigh and Darcy numbers. Chen et al.
[14] analyzed numerically steady-state free convection inside a
cavity made of two horizontal straight walls and two vertical
bent-wavy walls and filled with a fluid-saturated porous medium.
Their results showed that the dependence of the local Nusselt
number on Darcy number and porosity was not small at large
Darcy–Rayleigh number.

To the best of the authors’ knowledge, no attention has been
paid to non-Darcian effects on natural convection of flow and heat
transfer in a cavity that is heated uniformly from a vertical wavy
surface with different number of undulations and the wavy surface
amplitude. The objective of the present study is to examine the
momentum and energy transport processes inside a cavity made
of two horizontal straight walls and filled with a fluid-saturated
porous medium using different flow models of porous media such
as Forchheimer-extended Darcy, Brinkman-extended Darcy, and
the generalized model. The horizontal walls are kept adiabatic,
while the vertical walls are isothermal but kept at different tem-
peratures. The results are shown in terms of parametric presenta-
tions of streamlines and isotherms for various considered pertinent
dimensionless parameters. These dimensionless groups include the
Rayleigh number, the wavy surface amplitude, and number of
undulations offered by the wavy vertical surface. Finally, the impli-
cations of the above dimensionless parameters are also depicted on
the dimensionless local heat flux predictions.
2. Mathematical formulation

The problem under investigation is a laminar, steady, two
dimensional natural heat transfer convection in a cavity filled with
a porous medium. The physical system considered in the present
investigation is illustrated in Fig. 1. The left wavy wall is main-
tained at a constant temperature TH and the right wall is main-
tained at a constant temperature TC, while maintaining TH > TC.
The horizontal walls are considered adiabatic and impermeable.



Fig. 2. Grid system used in the present study.

Table 1
Comparison of the average Nusselt number in a cavity filled with a porous medium
between the present results and that of Nithiarasu et al. [21] and Chen et al. [13] for
various Rayleigh numbers (e = 0.9, Da = 10�2).

Ra Nu (Present) Nu [22] Nu [14]

1 � 103 1.02 1.023 1.02
1 � 104 1.63 1.63 1.63
1 � 105 3.93 3.91 3.92
5 � 105 6.69 6.70 NA
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The thermophysical properties of the fluid are assumed constant,
except for the density in the buoyancy term in the momentum
equations which is treated according to Boussinesq model. Fur-
thermore, the porous medium is considered homogeneous, isotro-
pic and is saturated with a fluid that is in local thermodynamic
equilibrium with the solid matrix of the porous medium.

By incorporating the above assumptions, the system of the
governing equations can be expressed in canonical forms based
on the volume average technique in the porous medium as such
[15–19]:
Continuity equation:

r� < V >¼ 0 ð1Þ

Momentum equation:

1
e
½< ðV � rÞV >� ¼ �r < P>f þ 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p r2 < V > � < V >

Da
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
� Feffiffiffiffiffiffi

Da
p ½< V > � < V >�J þ h ð2Þ

Energy equation:

V � rh ¼ 1ffiffiffiffiffiffiffiffiffiffi
PrRa
p r2h ð3Þ

The above equations were normalized using the following
dimensionless parameters:

V ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH

p ; P ¼ p
qðgbDTHÞ ; h ¼ T � TC

TH � TC
; x ¼ ðx; yÞ

H
ð4Þ

where b is the fluid thermal expansion coefficient, q the fluid den-
sity, g the gravitational acceleration, H is the height of the cavity, P
the dimensionless pressure, V the dimensionless velocity vector,
and Da ¼ K=H2 the Darcy number. In addition, the relevant Rayleigh
number and Prandtl number are given by Ra ¼ gbDTH3=ma and
Pr ¼ m=a, respectively. The shape of the bottom wavy surface profile
is assumed to mimic the following pattern

Y ¼ A½1� cosð2npXÞ� ð5Þ

where A is the dimensionless amplitude of the wavy surface and n is
the number of undulation. The definition of the problem at hand is
completed by highlighting the applied boundary conditions, which
can be summarized as follows

U ¼ V ¼ 0; h ¼ 1 at X ¼ 0; 0 < Y < 1
U ¼ 0;V ¼ 0; h ¼ 0 at X ¼ 1; 0 < X < 1

U ¼ V ¼ 0;
@h
@Y
¼ 0 at Y ¼ 0; 0 � X � 1

U ¼ V ¼ 0;
@h
@Y
¼ 0 at Y ¼ 1; 0 � X � 1

ð6Þ

The rate of heat transfer is computed at the left vertical wall and
is expressed in terms of the local Nusselt number Nu as

Nu ¼ hH
k
¼ � @h

@n
H ð7Þ

where, h represents the heat transfer coefficient, k thermal conduc-
tivity and n the coordinate direction normal to the surface. The
dimensionless normal temperature gradient can be written as

@h
@n
¼ 1

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@h
@X

� �2

þ @h
@Y

� �2
s

ð8Þ

while the average Nusselt number (Nu) is obtained by integrating
the local Nusselt number along the left wavy surface and is defined
by

Nu ¼ 1
S

Z S

0
Nuds ð9Þ
where S is the total chord length of the wavy surface and s is the
coordinate along the wavy surface.

3. Numerical scheme

A finite element formulation based on the Galerkin method is
employed to solve the governing equations. The application of this
technique is well documented by Taylor and Hood [20] and Gresho
et al. [21]. In the current investigation, the continuum domain is
divided into a set of non-overlapping regions called elements. Nine
node quadrilateral elements with bi-quadratic interpolation func-
tions are utilized to discretize the physical domain. Moreover,
interpolation functions in terms of local normalized element coor-
dinates are implemented to approximate the dependent variables
within each element. Subsequently, substitution of the approxima-
tions into the system of the governing equations and boundary
conditions yields a residual for each of the conservation equations.
These residuals are then reduced to zero in a weighted sense over
each element volume using Galerkin method.

The highly coupled and non-linear algebraic equations resulting
from the discretization of the governing equations are solved using
an iterative solution scheme called the segregated-solution algo-
rithm. The advantage of using this method lies in that the global
system matrix is decomposed into smaller submatrices and then
solved in a sequential manner. This technique results in consider-
ably fewer storage requirements. A pressure projection algorithm
is utilized to obtain a solution for the velocity field at every itera-
tion step. Furthermore, the pressure projection version of the
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segregated algorithm is used to solve the non-linear system. In
addition, the conjugate residual scheme is used to solve the sym-
metric pressure-type equation systems, while the conjugate gradi-
Table 2
Comparison of the average Nusselt number in a cavity filled with a porous medium
between the present results and that of Karimi–Farad [23] for various Darcy numbers
(Pr = Sc = 1 & GrT = GrC = 105).

Da Nu Present Nu [23] Difference (%)

10�2 5.43 5.45 0.36
10�3 3.54 3.63 2.54
10�4 1.24 1.26 1.6

Fig. 3. Effect of varying the amplitude on the flow patter
ent squared method is used for the non-symmetric advection-
diffusion-type equations.

Many numerical experiments of various mesh sizes is per-
formed to attain grid-independent results and to determine the
best compromise between accuracy and minimizing computer
execution time. As such, a variable grid-size system is employed
in the present investigation to capture the rapid changes in the
dependent variables especially near the walls where the major gra-
dients occur inside the boundary layer (Fig. 2). To test and assess
grid-independence of the solution scheme, numerical experiments
were performed using various mesh size and found that 80 � 80
grid nodes (i.e., non-uniform spacing) was sufficient to produce
grid-independence results.
ns and isotherms (Da = 10�2, Ra = 105, e = 0.9, n = 3).



Fig. 3 (continued)
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4. Validation

The present numerical code was validated against the numeri-
cal results of Nithiarasu et al. [22] and Chen et al. [14] for average
Nusselt number using the generalized momentum equation of por-
ous medium. Table 1, which demonstrates a comparison of the
average Nusselt number between the present results and the
numerical results of Nithiarasu et al. [22] and Chen et al. [14] re-
veals excellent agreement with the reported studies for various
Rayleigh numbers. An additional check on the accuracy of the pres-
ent code, the average Nusselt number results are also compared
with the results reported by Karimi–Farad [23] on non-Darcian
effects on double-diffusive convection within a porous medium.
Table 2 demonstrates an excellent agreement between both
results.

5. Results and discussion

The characteristics of the flow and temperature fields within
the porous cavity were examined by exploring the effects of the
Rayleigh number, number of undulations, and amplitude of the
wavy surface. Such field variables were examined by outlaying
the steady-state version of the streamline and temperature distri-
butions as well as the local heat flux. In the current numerical
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investigation, the following parametric domains of the dimension-
less groups were considered: 104 � Ra � 106;0 � n � 3;0 � A
� 0:25. In addition, the maximum and minimum recirculation
intensity levels and dimensionless temperature bounds were doc-
umented for the presented streamline results to reflect on the flow
intensity levels. The effect of Darcy number and porosity on the
heat transfer characteristics were not considered in the present
work since their influence is well documented in the literature.
As such Da = 10�2 and e = 0.9 were assumed in this study.

5.1. Effect of the wavy surface amplitude

The implications of the wavy surface amplitude A on the
momentum and energy transport processes in the porous cavity
is depicted in Fig. 3. This is first examined by plotting the stream-
lines and temperature contours as illustrated in Fig. 3. The results,
which are depicted for Ra = 105 and n = 3, indicate that the flow
activities and thermal currents are both a weak function of surface
amplitude in the considered rage of A = 0–0.25 This effect is more
profound in Fig. 4 which shows the effect of the wavy surface
amplitude on the local variation of heat flux along the wavy sur-
face. The results in Fig. 4 exhibit higher local heat flux variation
with an increase in the amplitude of the wavy surface owing to
higher velocity gradients near the wavy surface which subse-
quently increases the heat transfer rate. Moreover, Fig. 4 demon-
strates that the heat flux is higher close to the lower edge of the
vertical wavy wall for various amplitudes. The effect of the wavy
surface amplitude on the velocity and temperature profiles at
mid-sections of the cavity is illustrated in Fig. 5. This figure shows
that the amplitude of the wavy surface has an effect on the flow
velocity and temperature next to the wavy surface.

5.2. Effect of the Rayleigh number and the number of undulations on
the streamlines and isotherms

The effect of Rayleigh number on the streamline contours and
isotherms is depicted in Figs. 6 and 7. These figures show that
for low values of Rayleigh number, a central vortex appears as
the dominant characteristic of the flow. As Rayleigh number in-
creases (Ra = 104), the vortex tends to become elliptic and finally
breaks up into two vortices and move towards the vertical walls
at high Rayleigh number (Ra = 106). The shape of the isotherms
shows how the dominant heat transfer mechanism changes as Ray-
leigh number increases. For low Ra-values almost vertical iso-
therms appear, because heat is transferred by conduction
between hot and cold walls. As the isotherms depart from the ver-
tical position (Ra = 104), the heat transfer mechanism changes from
conduction to convection. Fig. 7 shows that the isotherms at the
centre of the cavity are horizontal and become vertical only inside
the very thin boundary layers at Ra = 106. The effect of the number
of undulations on the streamlines and isotherms is shown in Figs. 6
and 7 for various Rayleigh number. It appears from the figures that
varying the number of undulations between 0 and 3 does not dis-
turb the global flow and isotherm patterns except in the vicinity of
the vertical wavy wall, where the contour lines mimic the wall’s
profile. In addition, the recorded upper and lower bounds for flow
intensities do not seem to vary significantly for Rayleigh number of
104. However, at Rayleigh number of 106, Fig. 7 illustrates that the
presence of undulations influence the shape and the size of the
vortex next to the wavy surface.



Fig. 6. Effect of varying n on the flow patterns and isotherms (Da = 10�2, Ra = 104, e = 0.9, A = 0.05).
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5.3. Effect of the Rayleigh number and the number of undulations on
the local heat flux

The influence of the number of undulation on the local heat flux
for various Rayleigh numbers is demonstrated in Figs. 8 and 9.
These figures show that the employed number of undulation im-
pacts the distribution of the local heat flux along arc length of
the vertical surface by producing a corresponding number of peaks
and valleys which correspond to the imposed n values. Moreover,
the local heat flux increases along the segments of the wavy wall
entering into the fluid domain and decreases along the segments
of the wavy wall protruding out of the domain. It is worth men-
tioning that the local heat flux is higher close to the bottom of
the vertical wall and this is associated with a fact that the clock-
wise rotating fluid carries energy from the left wavy wall and, con-
sequently, becomes hot as it rises up again. Therefore, the local
heat flux along the wavy wall decreases as the temperature differ-
ence between the fluid and the wall decreases. Figs. 8 and 9 illus-
trate that the steep rise in the local heat flux along the wavy wall
for n = 3 is seen to decrease as n decreases.

5.4. Effect of the Rayleigh number and the number of undulations on
the average Nusselt number

The effect of varying Rayleigh number and the number of
undulations on the average Nusselt number of the wavy left wall



Fig. 7. Effect of varying n on the flow patterns and isotherms (Da = 10�2, Ra = 106, e = 0.9, A = 0.05).
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normalized by the corresponding average Nusselt number for a
smooth wall is illustrated in Fig. 10. This figure shows that the
wavy wall has a slight effect on the average Nusselt number com-
pared with a smooth wall case.
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Table 3
Effect of varying the location of the wavy surface on the average Nusselt number
(Da = 10�2, e = 0.9, A = 0.05).

Ra Nu (smooth left wall) Nu (wavy left wall) Nu (wavy bottom wall)

1 � 103 1.02 1.048 0.98
1 � 104 1.63 1.66 1.567
1 � 105 3.93 3.98 3.83
5 � 105 6.69 6.79 6.55
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5.5. Effect of varying the flow model for porous media on the average
Nusselt number

Fig. 11 illustrates the effect of varying Rayleigh number on the
average Nusselt number using different flow models for porous
media such as Forchheimer’s extension, Brinkman’s extension,
and the generalized model. Non-Darcian effects are analyzed
through investigating the average Nusselt number. It is interesting
to note that Brinkman’s extension of the Darcy model and the gen-
eralized model are very close. For wavy left wall, the use of the
Forchheimer’s extension results in an overestimation for the aver-
age Nusselt number compared to models based on Brinkman’s
extension and the generalized model.

5.6. Effect of the wavy surface location on the average Nusselt number

Table 3 demonstrates the effect of varying the wavy surface
location on the average Nusselt number compared with the results
for a smooth wall. The results show that the boundary condition at
the left wavy wall has an insignificant effect on the average Nusselt
numbers compared with a smooth left wall case for the range of
Rayleigh numbers studied in this work. However, this table shows
that bottom wavy surface has a slight effect on the average Nusselt
number when the left wall kept at a high temperature; TH.

6. Conclusions

Natural convection heat transfer in a wavy cavity filled with a
porous-saturated medium was studied numerically for various per-
tinent dimensionless groups. The vertical surface was considered to
follow a wavy pattern. Furthermore, the horizontal walls were sub-
jected to insulated boundary conditions. The generalized model of
the momentum equation, which is also known as the Forchhei-
mer–Brinkman-extended Darcy model was solved using the Galer-
kin finite element method. Effects of dimensionless groups
representing the wavy geometry, Rayleigh number, and number
of undulation were highlighted to study their impacts on flow
structure and heat transfer characteristics. The results of this inves-
tigation illustrated that the amplitude of the wavy surface and the
number of undulations affect heat transfer characteristics inside
the cavity. Furthermore, the intensity of convection within the
cavity was observed to increase with the increase in the Rayleigh
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number. A comparison of the several flow models for porous media
such as Forchheimer-extended Darcy, Brinkman-extended Darcy,
and the generalized flow models was conducted to show the influ-
ence of non-Darcian effects on the average Nusselt number.
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